
Chapter 3

[71]

The CustomerDAL class is pretty simple: we are fetching the data from the database
using data readers, and performing all data related operations using the Customer
business object. This Customer class is defined in the Customer.cs class we created
earlier. This BL class is calling DAL methods, so it needs a reference to the DAL
namespace (using DomainModel.DAL). Similarly, the DAL class we created earlier
used Customer business objects. That's why it also needed the BL namespace.

We are using generics to create a collection of Customer objects. The BL
communicates with DAL to get the data and perform updates. Now, we will
see how the UI (which is under a different namespace) talks to BL without even
knowing about DAL.

Layer 3: The UI Layer
Here is the code in the AllCustomers.aspx.cs page that shows a list of all of the
customers from the DB (there is a data list on the web form, which will show a list of
the customers):

using DomainModel.BL;
namespace DomainModel.UI
 {
 //page load
 private void FillAllCustomers()
 {
 Customer c = new Customer();
 c.GetAll();
 List<Customer> cuList = c.CustomerCollection;
 dtlstAllCustomer.DataSource = cuList;
 dtlstAllCustomer.DataBind();
 }
 }

So in the UI class, we neither have any data access code (as we had in the previous
chapter), nor are we calling data access class methods from this layer (as was the case
with the 1-tier 2-layer style we saw earlier in this chapter). We have a reference to the
BL layer (using DomainModel.BL), and we are using the Customer business object to
return a generic list of customer objects, which we are binding to the data list control
(showing a list of all the customers). So the GUI layer does not know anything about
the DAL layer, and is completely independent of it.

The idea here is to understand how a 3-Layer architecture can provide more
flexibility and loose-coupling to your project. In the next section, we will learn how
we can use object data source controls to implement a 3-layer architecture without
writing much code ourselves.

ER Diagram, Domain Model, and N-Layer Architecture

[72]

Object Data Source Controls
We looked at the data source controls in the last chapter and saw how they replaced
the data access code, but tightly coupled the GUI to the data methods. To overcome
this problem, Microsoft introduced object data source controls, so that we can bind
directly to business objects, making it possible to use them in a 3-tier architecture.

Let's see how using object data source controls will shape our application:

1. Create a new web project using VS.
2. Add a new form named datasource-customer.aspx.
3. Add an object data source control, as shown here (drag and drop the object

data source control from the Data tab under ToolBox in VS):

4. Now, we need to configure this object data source control. We first need to
set the Business object , where we select our customer class:

